Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
J Infect Dis ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507572

RESUMEN

HIV-1 RNA genetic diversity predicts time since infection which is important for clinical care and research. It's unclear, however, whether proviral DNA genetic diversity sampled under suppressive antiretroviral therapy can be used for this purpose. We tested whether proviral genetic diversity from NGS sequences predicts time since infection and recency in 221 people with HIV-1 with known infection time. Proviral diversity was significantly associated with time since infection (p<5*10-07, R2 up to 25%) and predictive of treatment initiation during recent infection (AUC-ROC up to 0.85). This shows the utility of proviral genetic diversity as a proxy for time since infection.

2.
Gene Ther ; 31(3-4): 74-84, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37558852

RESUMEN

Infections with the human immunodeficiency virus type 1 (HIV-1) are incurable due the long-lasting, latent viral reservoir. The shock-and-kill cure approach aims to activate latent proviruses in HIV-1 infected cells and subsequently kill these cells with strategies such as therapeutic vaccines or immune enhancement. Here, we combined the dCas9-VPR CRISPR activation (CRISPRa) system with gRNA-V, the truncated Bid (tBid)-based suicide gene strategy and CD3-retargeted adenovirus (Ad) delivery vectors, in an all-in-one targeted shock-and-kill gene therapy approach to achieve specific elimination of latently HIV-1 infected cells. Simultaneous transduction of latently HIV-1 infected J-Lat 10.6 cells with a CD3-retargeted Ad-CRISPRa-V and Ad-tBid led to a 57.7 ± 17.0% reduction of productively HIV-1 infected cells and 2.4-fold ± 0.25 increase in cell death. The effective activation of latent HIV-1 provirus by Ad-CRISPRa-V was similar to the activation control TNF-α. The strictly HIV-1 dependent and non-leaky killing by tBid could be demonstrated. Furthermore, the high transduction efficiencies of up to 70.8 ± 0.4% by the CD3-retargeting technology in HIV-1 latently infected cell lines was the basis of successful shock-and-kill. This novel targeted shock-and-kill all-in-one gene therapy approach has the potential to safely and effectively eliminate HIV-1 infected cells in a highly HIV-1 and T cell specific manner.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , VIH-1/genética , Infecciones por VIH/genética , Activación Viral/genética , Latencia del Virus/genética , Adenoviridae/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ARN Guía de Sistemas CRISPR-Cas , Provirus/genética , Terapia Genética , Linfocitos T CD4-Positivos/metabolismo
3.
bioRxiv ; 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-37649906

RESUMEN

Infection with Mycobacterium tuberculosis (MTB) remains one of the most important opportunistic infections in people with HIV-1 (PWH). While active Tuberculosis (TB) leads to rapid progression of immunodeficiency in PWH, the interaction between MTB and HIV-1 during the asymptomatic phase of both infections remains poorly understood. In a cohort of individuals with HIV (PWH) with and without suppressed HIV-1 viral load, the transcriptomic profiles of peripheral blood mononuclear cells (PBMC) clustered in individuals infected with Mycobacterium tuberculosis (MTB) compared to carefully matched controls. Subsequent functional annotation analysis disclosed alterations in the IL-6, TNF, and KRAS pathways. Notably, MTB-associated genes demonstrated an inverse correlation with HIV-1 viremia, evident at both on individual gene level and when employed as a gene score. In sum, our data show that MTB infection in PWH is associated with a shift in the activation state of the immune system, displaying an inverse relationship with HIV-1 viral load. These results could provide an explanation for the observed increased antiretroviral control associated with MTB infection in PWH.

4.
Open Forum Infect Dis ; 10(11): ofad514, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37953817

RESUMEN

Background: T-cell responses during chronic viral infections become exhausted, which is reflected by upregulation of inhibitory receptors (iRs) and increased interleukin 10 (IL-10). We assessed 2 iRs-PD-1 (programmed cell death protein 1) and Tim-3 (T-cell immunoglobulin and mucin domain-containing protein 3)-and IL-10 mRNAs in peripheral blood mononuclear cells (PBMCs) and their soluble analogs (sPD-1, sTim-3, and IL-10) in plasma in chronic HIV-1/hepatitis C virus (HCV) coinfection and explored the effect of HCV treatment on these markers. We also aimed to establish whether iR expression may be determined by the HCV CD8+ T-cell immunodominant epitope sequence. Methods: Plasma and PBMCs from 31 persons with chronic HIV-1/HCV coinfection from the Swiss HIV Cohort Study were collected before and after HCV treatment. As controls, 45 persons who were HIV-1 negative with chronic HCV infection were recruited. Exhaustion markers were assessed by enzyme-linked immunosorbent assay in plasma and by quantitative reverse transcription polymerase chain reaction in PBMCs. Analysis of an HCV epitope sequence was conducted by next-generation sequencing: HLA-A*02-restricted NS31073-1081 and NS31406-1415 and HLA-A*01-restricted NS31436-1444. Results: The study revealed higher plasma sPD-1 (P = .0235) and IL-10 (P = .002) levels and higher IL-10 mRNA in PBMCs (P = .0149) in HIV-1/HCV coinfection. A decrease in plasma sPD-1 (P = .0006), sTim-3 (P = .0136), and IL-10 (P = .0003) and Tim-3 mRNA in PBMCs (P = .0210) was observed following successful HCV treatment. Infection with the HLA-A*01-restricted NS31436-1444 ATDALMTGY prototype variant was related to higher sTim-3 levels than infection with the ATDALMTGF escape variant (P = .0326). Conclusions: The results underscore the synergistic effect of coinfection on expression of exhaustion markers, their reduction following successful HCV treatment and imply that iR levels may operate on an epitope-specific manner.

5.
J Antimicrob Chemother ; 78(9): 2323-2334, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37545164

RESUMEN

BACKGROUND: Genotypic resistance testing (GRT) is routinely performed upon diagnosis of HIV-1 infection or during virological failure using plasma viral RNA. An alternative source for GRT could be cellular HIV-1 DNA. OBJECTIVES: A substantial number of participants in the Swiss HIV Cohort Study (SHCS) never received GRT. We applied a method that enables access to the near full-length proviral HIV-1 genome without requiring detectable viraemia. METHODS: Nine hundred and sixty-two PBMC specimens were received. Our two-step nested PCR protocol was applied to generate two overlapping long-range amplicons of the HIV-1 genome, sequenced by next-generation sequencing (NGS) and analysed by MinVar, a pipeline to detect drug resistance mutations (DRMs). RESULTS: Six hundred and eighty-one (70.8%) of the samples were successfully amplified, sequenced and analysed by MinVar. Only partial information of the pol gene was contained in 82/681 (12%), probably due to naturally occurring deletions in the proviral sequence. All common HIV-1 subtypes were successfully sequenced. We detected at least one major DRM at high frequency (≥15%) in 331/599 (55.3%) individuals. Excluding APOBEC-signature (G-to-A mutation) DRMs, 145/599 (24.2%) individuals carried at least one major DRM. RT-inhibitor DRMs were most prevalent. The experienced time on ART was significantly longer in DRM carriers (P = 0.001) independent of inclusion or exclusion of APOBEC-signature DRMs. CONCLUSIONS: We successfully applied a reliable and efficient method to analyse near full-length HIV-1 proviral DNA and investigated DRMs in individuals with undetectable or low viraemia. Additionally, our data underscore the need for new computational tools to exclude APOBEC-related hypermutated NGS sequence reads for reporting DRMs.


Asunto(s)
Farmacorresistencia Viral , Infecciones por VIH , VIH-1 , VIH-1/efectos de los fármacos , ADN/genética , Mutación , Suiza/epidemiología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiología , Estudios Retrospectivos , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , ADN Polimerasa Dirigida por ADN/metabolismo , Prevalencia
6.
Cell Rep Methods ; 3(6): 100485, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37426753

RESUMEN

While combination therapy completely suppresses HIV-1 replication in blood, functional virus persists in CD4+ T cell subsets in non-peripheral compartments that are not easily accessible. To fill this gap, we investigated tissue-homing properties of cells that transiently appear in the circulating blood. Through cell separation and in vitro stimulation, the HIV-1 "Gag and Envelope reactivation co-detection assay" (GERDA) enables sensitive detection of Gag+/Env+ protein-expressing cells down to about one cell per million using flow cytometry. By associating GERDA with proviral DNA and polyA-RNA transcripts, we corroborate the presence and functionality of HIV-1 in critical body compartments utilizing t-distributed stochastic neighbor embedding (tSNE) and density-based spatial clustering of applications with noise (DBSCAN) clustering with low viral activity in circulating cells early after diagnosis. We demonstrate transcriptional HIV-1 reactivation at any time, potentially giving rise to intact, infectious particles. With single-cell level resolution, GERDA attributes virus production to lymph-node-homing cells with central memory T cells (TCMs) as main players, critical for HIV-1 reservoir eradication.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , VIH-1/genética , Linfocitos T CD4-Positivos , Subgrupos de Linfocitos T
7.
J Infect Dis ; 228(7): 907-918, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37498738

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) infection is treated with antiretroviral therapy (ART), usually consisting of 2-3 different drugs, referred to as combination ART (cART). Our recent randomized clinical trial comparing a switch to dolutegravir monotherapy with continuation of cART in early-treated individuals demonstrated sustained virological suppression over 48 weeks. Here, we characterize the longitudinal landscape of the HIV-1 reservoir in these participants, with particular attention to potential differences between treatment groups regarding evidence of evolution as a proxy for low-level replication. Near full-length HIV-1 proviral polymerase chain reaction and next-generation sequencing was applied to longitudinal peripheral blood mononuclear cell samples to assess proviral evolution and the potential emergence of drug resistance mutations (DRMs). Neither an increase in genetic distance nor diversity over time was detected in participants of both treatment groups. Single proviral analysis showed high proportions of defective proviruses and low DRM numbers. No evidence for evolution during dolutegravir monotherapy was found in these early-treated individuals.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , VIH-1/genética , Provirus/genética , Leucocitos Mononucleares , Infecciones por VIH/tratamiento farmacológico , Carga Viral
8.
Clin Infect Dis ; 77(7): 1012-1020, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37338148

RESUMEN

BACKGROUND: Starting combination antiretroviral therapy (cART) during primary human immunodeficiency virus type 1 (HIV-1) infection results in a smaller HIV-1 latent reservoir, reduced immune activation, and less viral diversity compared to starting cART during chronic infection. We report results of a 4-year study designed to determine whether these properties would allow sustained virological suppression after simplification of cART to dolutegravir (DTG) monotherapy. METHODS: EARLY-SIMPLIFIED is a randomized, open-label, noninferiority trial. People with HIV (PWH) who started cART <180 days after a documented primary HIV-1 infection with suppressed viral load were randomized (2:1) to DTG monotherapy with 50 mg daily or continuation of cART. The primary endpoints were the proportion of PWH with viral failure at 48, 96, 144, and 192 weeks; noninferiority margin was 10%. After 96 weeks, randomization was lifted and patients were permitted to switch treatment groups as desired. RESULTS: Of 101 PWH randomized, 68 were assigned to DTG monotherapy and 33 to cART. At week 96 in the per-protocol population, 64/64 (100%) showed virological response in the DTG monotherapy group versus 30/30 (100%) in the cART group (difference, 0.00%; upper bound of 95% confidence interval 6.22%). This demonstrated noninferiority of DTG monotherapy at the prespecified level. At week 192, the study end, no virological failure occurred in either group during 13 308 and 4897 person weeks of follow-up for the DTG monotherapy (n = 80) and cART groups, respectively. CONCLUSIONS: This trial suggests that early cART initiation during primary HIV infection allows sustained virological suppression after switching to DTG monotherapy.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Humanos , Respuesta Virológica Sostenida , Terapia Antirretroviral Altamente Activa , Compuestos Heterocíclicos con 3 Anillos/uso terapéutico , Carga Viral , Fármacos Anti-VIH/uso terapéutico , Resultado del Tratamiento
9.
J Antimicrob Chemother ; 78(3): 656-664, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36738248

RESUMEN

BACKGROUND: Next-generation sequencing (NGS) is gradually replacing Sanger sequencing (SS) as the primary method for HIV genotypic resistance testing. However, there are limited systematic data on comparability of these methods in a clinical setting for the presence of low-abundance drug resistance mutations (DRMs) and their dependency on the variant-calling thresholds. METHODS: To compare the HIV-DRMs detected by SS and NGS, we included participants enrolled in the Swiss HIV Cohort Study (SHCS) with SS and NGS sequences available with sample collection dates ≤7 days apart. We tested for the presence of HIV-DRMs and compared the agreement between SS and NGS at different variant-calling thresholds. RESULTS: We included 594 pairs of SS and NGS from 527 SHCS participants. Males accounted for 80.5% of the participants, 76.3% were ART naive at sample collection and 78.1% of the sequences were subtype B. Overall, we observed a good agreement (Cohen's kappa >0.80) for HIV-DRMs for variant-calling thresholds ≥5%. We observed an increase in low-abundance HIV-DRMs detected at lower thresholds [28/417 (6.7%) at 10%-25% to 293/812 (36.1%) at 1%-2% threshold]. However, such low-abundance HIV-DRMs were overrepresented in ART-naive participants and were in most cases not detected in previously sampled sequences suggesting high sequencing error for thresholds <3%. CONCLUSIONS: We found high concordance between SS and NGS but also a substantial number of low-abundance HIV-DRMs detected only by NGS at lower variant-calling thresholds. Our findings suggest that a substantial fraction of the low-abundance HIV-DRMs detected at thresholds <3% may represent sequencing errors and hence should not be overinterpreted in clinical practice.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Seropositividad para VIH , VIH-1 , Masculino , Humanos , Infecciones por VIH/tratamiento farmacológico , Estudios de Cohortes , Farmacorresistencia Viral/genética , Carga Viral , Seropositividad para VIH/tratamiento farmacológico , Mutación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Genotipo , Fármacos Anti-VIH/uso terapéutico
10.
Front Immunol ; 13: 915805, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090997

RESUMEN

The main obstacle to cure HIV-1 is the latent reservoir. Antiretroviral therapy effectively controls viral replication, however, it does not eradicate the latent reservoir. Latent CD4+ T cells are extremely rare in HIV-1 infected patients, making primary CD4+ T cell models of HIV-1 latency key to understanding latency and thus finding a cure. In recent years several primary CD4+ T cell models of HIV-1 latency were developed to study the underlying mechanism of establishing, maintaining and reversing HIV-1 latency. In the search of biomarkers, primary CD4+ T cell models of HIV-1 latency were used for bulk and single-cell transcriptomics. A wealth of information was generated from transcriptome analyses of different primary CD4+ T cell models of HIV-1 latency using latently- and reactivated HIV-1 infected primary CD4+ T cells. Here, we performed a pooled data-analysis comparing the transcriptome profiles of latently- and reactivated HIV-1 infected cells of 5 in vitro primary CD4+ T cell models of HIV-1 latency and 2 ex vivo studies of reactivated HIV-1 infected primary CD4+ T cells from HIV-1 infected individuals. Identifying genes that are differentially expressed between latently- and reactivated HIV-1 infected primary CD4+ T cells could be a more successful strategy to better understand and characterize HIV-1 latency and reactivation. We observed that natural ligands and coreceptors were predominantly downregulated in latently HIV-1 infected primary CD4+ T cells, whereas genes associated with apoptosis, cell cycle and HLA class II were upregulated in reactivated HIV-1 infected primary CD4+ T cells. In addition, we observed 5 differentially expressed genes that co-occurred in latently- and reactivated HIV-1 infected primary CD4+ T cells, one of which, MSRB2, was found to be differentially expressed between latently- and reactivated HIV-1 infected cells. Investigation of primary CD4+ T cell models of HIV-1 latency that mimic the in vivo state remains essential for the study of HIV-1 latency and thus providing the opportunity to compare the transcriptome profile of latently- and reactivated HIV-1 infected cells to gain insights into differentially expressed genes, which might contribute to HIV-1 latency.


Asunto(s)
Seropositividad para VIH , VIH-1 , Linfocitos T CD4-Positivos/metabolismo , VIH-1/fisiología , Humanos , Transcriptoma , Latencia del Virus/fisiología
11.
Viruses ; 14(7)2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35891501

RESUMEN

Viruses are the cause of a considerable burden to human, animal and plant health, while on the other hand playing an important role in regulating entire ecosystems. The power of new sequencing technologies combined with new tools for processing "Big Data" offers unprecedented opportunities to answer fundamental questions in virology. Virologists have an urgent need for virus-specific bioinformatics tools. These developments have led to the formation of the European Virus Bioinformatics Center, a network of experts in virology and bioinformatics who are joining forces to enable extensive exchange and collaboration between these research areas. The EVBC strives to provide talented researchers with a supportive environment free of gender bias, but the gender gap in science, especially in math-intensive fields such as computer science, persists. To bring more talented women into research and keep them there, we need to highlight role models to spark their interest, and we need to ensure that female scientists are not kept at lower levels but are given the opportunity to lead the field. Here we showcase the work of the EVBC and highlight the achievements of some outstanding women experts in virology and viral bioinformatics.


Asunto(s)
Biología Computacional , Investigadores , Virus , Europa (Continente) , Femenino , Humanos , Investigadores/estadística & datos numéricos , Virus/genética
12.
Mol Ther Methods Clin Dev ; 26: 107-118, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-35795775

RESUMEN

Genomic safe harbors (GSH) are defined as sites in the host genome that allow stable expression of inserted transgenes while having no adverse effects on the host cell, making them ideal for use in basic research and therapeutic applications. Silencing and fluctuations in transgene expression would be highly undesirable effects. We have previously shown that transgene expression in Jurkat T cells is not silenced for up to 160 days after CRISPR-Cas9-mediated insertion of reporter genes into the adeno-associated virus site 1 (AAVS1), a commonly used GSH. Here, we studied fluctuations in transgene expression upon targeted insertion into the GSH AAVS1. We have developed an efficient method to generate and validate highly complex barcoded plasmid libraries to study transgene expression on the single-cell level. Its applicability is demonstrated by inserting the barcoded transgene Cerulean into the AAVS1 locus in Jurkat T cells via the CRISPR-Cas9 technology followed by next-generation sequencing of the transcribed barcodes. We observed large transcriptional variations over two logs for transgene expression in the GSH AAVS1. This barcoded transgene insertion model is a powerful tool to investigate fluctuations in transgene expression at any GSH site.

13.
J Gen Virol ; 103(6)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35671066

RESUMEN

CRISPR/dCas9-based activation systems (CRISPRa) enable sequence-specific gene activation and are therefore of particular interest for the 'shock and kill' cure approach against HIV-1 infections. This approach aims to activate the latent HIV-1 proviruses in infected cells and subsequently kill these cells. Several CRISPRa systems have been shown to specifically and effectively activate latent HIV-1 when targeted to the HIV-1 5'LTR promoter, making them a promising 'shock' strategy. Here, we aimed to evaluate the dCas9-VPR system for its applicability in reversing HIV-1 latency and identify the optimal gRNA target site in the HIV-1 5'LTR promoter leading to the strongest activation of the provirus with this system. We systematically screened the HIV-1 promoter by selecting 14 specific gRNAs that cover almost half of the HIV-1 promoter from the 3' half of the U3 until the beginning of the R region. Screening in several latently HIV-1 infected cell lines showed that dCas9-VPR leads to a high activation of HIV-1 and that gRNA-V and -VII induce the strongest activation of replication competent latent provirus. This data indicates that the optimal activation region in the HIV-1 promoter for the dCas9-VPR system is located -165 to -106 bp from the transcription start site and that it is consistent with the optimal activation region reported for other CRISPRa systems. Our data demonstrates that the dCas9-VPR system is a powerful tool for HIV-1 activation and could be harnessed for the 'shock and kill' cure approach.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , VIH-1/genética , Humanos , Provirus/genética , ARN Guía de Kinetoplastida/genética , Activación Viral/genética , Latencia del Virus/genética
14.
Curr Opin HIV AIDS ; 17(4): 222-228, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35762377

RESUMEN

PURPOSE OF REVIEW: HIV-1 drug resistance (HIV DR) testing is routinely performed by genotyping plasma viruses using Sanger population sequencing. Next-generation sequencing (NGS) is increasingly replacing standardized Sanger sequencing. This opens up new opportunities, but also brings challenges. RECENT FINDINGS: The number of NGS applications and protocols for HIV DR testing is increasing. All of them are noninferior to Sanger sequencing when comparing NGS-derived consensus sequences to Sanger sequencing-derived sequences. In addition, NGS enables high-throughput sequencing of near full-length HIV-1 genomes and detection of low-abundance drug-resistant HIV-1 variants, although their clinical implications need further investigation. Several groups have defined remaining challenges in implementing NGS protocols for HIV-1 resistance testing. Some of them are already being addressed. One of the most important needs is quality management and consequently, if possible, standardization. SUMMARY: The use of NGS technologies on HIV DR testing will allow unprecedented insights into genomic structures of virus populations that may be of immediate relevance to both clinical and research areas such as personalized antiretroviral treatment. Efforts continue to tackle the remaining challenges in NGS-based HIV DR testing.


Asunto(s)
Farmacorresistencia Viral , Infecciones por VIH , VIH-1 , Fármacos Anti-VIH/farmacología , Farmacorresistencia Viral/genética , Genotipo , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos
15.
Open Forum Infect Dis ; 9(6): ofac107, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35615294

RESUMEN

Background: Dolutegravir monotherapy (DTG-m) results in virological failure (VF) in some people with human immunodeficiency virus (PWH). We sought to identify the independent factors associated with the risk of VF and to explore the effect size heterogeneity between subgroups of PWH enrolled in DTG-m trials. Methods: We searched for randomized clinical trials (RCTs) evaluating DTG-m versus combined antiretroviral therapy (cART) among PWH virologically controlled for at least 6 months on cART. We performed an individual participant data meta-analysis of VF risk factors and quantified their explained heterogeneity in random-effect models. Definition of VF was a confirmed plasma human immunodeficiency virus (HIV)-1 ribonucleic acid (RNA) >50 copies/mL by week 48. Results: Among 416 PWH from 4 RCTs, DTG-m significantly increased the risk of VF (16 of 227 [7%] versus 0 of 189 for cART; risk difference 7%; 95% confidence interval [CI], 1%-2%; P = .02; I2 = 51%). Among 272 participants exposed to DTG-m, VF were more likely in participants with the following: first cART initiated ≥90 days from HIV acute infection (adjusted hazard ratio [aHR], 5.16; 95% 95% CI, 1.60-16.65), CD4 T cells nadir <350/mm3 (aHR, 12.10; 95% CI, 3.92-37.40), HIV RNA signal at baseline (aHR, 4.84; 95% CI, 3.68-6.38), and HIV-deoxyribonucleic acid (DNA) copy number at baseline ≥2.7 log/106 peripheral blood mononuclear cells (aHR, 3.81; 95% CI, 1.99-7.30). Among these independent risk factors, the largest effect size heterogeneity was found between HIV DNA subgroups (I2 = 80.2%; P for interaction = .02). Conclusions: Our study supports the importance of a large viral reservoir size for explaining DTG-m simplification strategy failure. Further studies are needed to link size and genetic diversity of the HIV-1 reservoir.

16.
Viruses ; 14(4)2022 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-35458514

RESUMEN

We hypothesize that patterns of sexual behavior play a role in the conformation of transmission networks, i.e., the way you behave might influence whom you have sex with. If that was the case, behavioral grouping might in turn correlate with, and potentially predict transmission networking, e.g., proximity in a viral phylogeny. We rigorously present an intuitive approach to address this hypothesis by quantifying mapped interactions between groups defined by similarities in sexual behavior along a virus phylogeny while discussing power and sample size considerations. Data from the Swiss HIV Cohort Study on condom use and hepatitis C virus (HCV) sequences served as proof-of-concept. In this case, a strict inclusion criteria contrasting with low HCV prevalence hindered our possibilities to identify significant relationships. This manuscript serves as guide for studies aimed at characterizing interactions between behavioral patterns and transmission networks. Large transmission networks such as those of HIV or COVID-19 are prime candidates for applying this methodological approach.


Asunto(s)
COVID-19 , Infecciones por VIH , Hepatitis C , COVID-19/epidemiología , Estudios de Cohortes , Hepacivirus/genética , Homosexualidad Masculina , Humanos , Masculino , Filogenia , Prevalencia
17.
J Infect Dis ; 226(7): 1256-1266, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35485458

RESUMEN

BACKGROUND: Studying human immunodeficiency virus type 1 (HIV-1) superinfection is important to understand virus transmission, disease progression, and vaccine design. But detection remains challenging, with low sampling frequencies and insufficient longitudinal samples. METHODS: Using the Swiss HIV Cohort Study (SHCS), we developed a molecular epidemiology screening for superinfections. A phylogeny built from 22 243 HIV-1 partial polymerase sequences was used to identify potential superinfections among 4575 SHCS participants with longitudinal sequences. A subset of potential superinfections was tested by near-full-length viral genome sequencing (NFVGS) of biobanked plasma samples. RESULTS: Based on phylogenetic and distance criteria, 325 potential HIV-1 superinfections were identified and categorized by their likelihood of being detected as superinfections due to sample misidentification. NFVGS was performed for 128 potential superinfections; of these, 52 were confirmed by NFVGS, 15 were not confirmed, and for 61 sampling did not allow confirming or rejecting superinfection because the sequenced samples did not include the relevant time points causing the superinfection signal in the original screen. Thus, NFVGS could support 52 of 67 adequately sampled potential superinfections. CONCLUSIONS: This cohort-based molecular approach identified, to our knowledge, the largest population of confirmed superinfections, showing that, while rare with a prevalence of 1%-7%, superinfections are not negligible events.


Asunto(s)
Infecciones por VIH , VIH-1 , Sobreinfección , Vacunas , Estudios de Cohortes , Humanos , Epidemiología Molecular , Filogenia , Sobreinfección/epidemiología , Suiza/epidemiología
18.
J Infect Dis ; 226(6): 1057-1068, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-35299248

RESUMEN

BACKGROUND: HIV-1 replication capacity (RC) of transmitted/founder viruses may influence the further course of HIV-1 infection. METHODS: RCs of 355 whole-genome primary HIV-1 isolates derived from samples acquired during acute and recent primary HIV-1 infection (PHI) were determined using a novel high-throughput infection assay in primary cells. The RCs were used to elucidate potential factors that could be associated with RC during PHI. RESULTS: Increased RC was found to be associated with increased set point viral load (VL), and significant differences in RCs among 13 different HIV-1 subtypes were discerned. Notably, we observed an increase in RCs for primary HIV-1 isolates of HIV-1 subtype B over a 17-year period. Associations were not observed between RC and CD4 count at sample date of RC measurement, CD4 recovery after initiation of antiretroviral treatment, CD4 decline in untreated individuals, and acute retroviral syndrome severity scores. CONCLUSIONS: These findings highlight that RCs of primary HIV-1 isolates acquired during the acute and recent phase of infection are more associated with viral factors, that is set point VL, than with host factors. Furthermore, we observed a temporal increase in RC for HIV-1 subtype B viruses over a period of 17 years. CLINICAL TRIALS REGISTRATION: NCT00537966.


Asunto(s)
Infecciones por VIH , VIH-1 , Replicación Viral , Biomarcadores , Recuento de Linfocito CD4 , Infecciones por VIH/diagnóstico , Seropositividad para VIH , VIH-1/fisiología , Humanos , Carga Viral
19.
Viruses ; 14(2)2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35215999

RESUMEN

Little is known about whether and how variation in the HIV-1 genome affects its transmissibility. Assessing which genomic features of HIV-1 are under positive or negative selection during transmission is challenging, because very few virus particles are typically transmitted, and random genetic drift can dilute genetic signals in the recipient virus population. We analyzed 30 transmitter-recipient pairs from the Zurich Primary HIV Infection Study and the Swiss HIV Cohort Study using near full-length HIV-1 genomes. We developed a new statistical test to detect selection during transmission, called Selection Test in Transmission (SeTesT), based on comparing the transmitter and recipient virus population and accounting for the transmission bottleneck. We performed extensive simulations and found that sensitivity of detecting selection during transmission is limited by the strong population bottleneck of few transmitted virions. When pooling individual test results across patients, we found two candidate HIV-1 genomic features for affecting transmission, namely amino acid positions 3 and 18 of Vpu, which were significant before but not after correction for multiple testing. In summary, SeTesT provides a general framework for detecting selection based on genomic sequencing data of transmitted viruses. Our study shows that a higher number of transmitter-recipient pairs is required to improve sensitivity of detecting selection.


Asunto(s)
Infecciones por VIH/transmisión , VIH-1/genética , Heterosexualidad , Selección Genética , Transmisión de Enfermedad Infecciosa/estadística & datos numéricos , Femenino , Variación Genética , Proteínas del Virus de la Inmunodeficiencia Humana/genética , Humanos , Masculino , Modelos Estadísticos , Datos de Secuencia Molecular , Mutación Puntual
20.
Open Forum Infect Dis ; 8(5): ofab046, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34046513

RESUMEN

BACKGROUND: In resource-limited settings, the World Health Organization recommends enhanced adherence counseling (EAC) for individuals with an unsuppressed human immunodeficiency virus (HIV)-1 viral load (VL) and to remeasure VL after 3 months to avoid unnecessary regimen switches. In cases in which this follow-up VL remains unsuppressed, a regimen switch is indicated. We aimed to assess levels of HIV-1 drug resistance before and after the EAC period among people with ongoing viremia (≥80 c/mL) after EAC. METHODS: We included adult participants of the CART-1 cohort study conducted in Lesotho who had a VL ≥80 c/mL after EAC. Paired plasma samples (before and after EAC) were analyzed by next-generation sequencing. We assessed the prevalence of resistance-associated mutations and viral susceptibility scores to each participant's antiretroviral therapy (ART) regimen (range, 0-3; 3 indicates complete susceptibility). RESULTS: Among 93 participants taking nonnucleoside reverse-transcriptase inhibitor-based ART with an initial VL ≥1000 copies/mL who received a follow-up VL test after EAC, 76 still had a VL ≥80 copies/mL after EAC, and paired samples were available for 57 of 76. The number of individuals without full susceptibility to any drug in their regimen increased from 31 of 57 (54.4%) before to 36 of 57 (63.2%) after EAC. Median susceptibility scores dropped from 0.5 (interquartile range [IQR] = 0.25-) to 0.25 (IQR = 0.25-1) during the EAC period (P = .16). CONCLUSIONS: Despite high levels of resistance before EAC, we observed a slight decline in susceptibility scores after EAC. The risk of further accumulation of resistance during EAC has to be balanced against the benefit of avoiding unnecessary switches in those with spontaneous resuppression after EAC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA